Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 927, 16080 i.e. 3 the largest integer that leaves a remainder zero for all numbers.
HCF of 927, 16080 is 3 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 927, 16080 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 927, 16080 is 3.
HCF(927, 16080) = 3
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 927, 16080 is 3.
Step 1: Since 16080 > 927, we apply the division lemma to 16080 and 927, to get
16080 = 927 x 17 + 321
Step 2: Since the reminder 927 ≠ 0, we apply division lemma to 321 and 927, to get
927 = 321 x 2 + 285
Step 3: We consider the new divisor 321 and the new remainder 285, and apply the division lemma to get
321 = 285 x 1 + 36
We consider the new divisor 285 and the new remainder 36,and apply the division lemma to get
285 = 36 x 7 + 33
We consider the new divisor 36 and the new remainder 33,and apply the division lemma to get
36 = 33 x 1 + 3
We consider the new divisor 33 and the new remainder 3,and apply the division lemma to get
33 = 3 x 11 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 927 and 16080 is 3
Notice that 3 = HCF(33,3) = HCF(36,33) = HCF(285,36) = HCF(321,285) = HCF(927,321) = HCF(16080,927) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 927, 16080?
Answer: HCF of 927, 16080 is 3 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 927, 16080 using Euclid's Algorithm?
Answer: For arbitrary numbers 927, 16080 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.