Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 927, 595, 445 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 927, 595, 445 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 927, 595, 445 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 927, 595, 445 is 1.
HCF(927, 595, 445) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 927, 595, 445 is 1.
Step 1: Since 927 > 595, we apply the division lemma to 927 and 595, to get
927 = 595 x 1 + 332
Step 2: Since the reminder 595 ≠ 0, we apply division lemma to 332 and 595, to get
595 = 332 x 1 + 263
Step 3: We consider the new divisor 332 and the new remainder 263, and apply the division lemma to get
332 = 263 x 1 + 69
We consider the new divisor 263 and the new remainder 69,and apply the division lemma to get
263 = 69 x 3 + 56
We consider the new divisor 69 and the new remainder 56,and apply the division lemma to get
69 = 56 x 1 + 13
We consider the new divisor 56 and the new remainder 13,and apply the division lemma to get
56 = 13 x 4 + 4
We consider the new divisor 13 and the new remainder 4,and apply the division lemma to get
13 = 4 x 3 + 1
We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get
4 = 1 x 4 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 927 and 595 is 1
Notice that 1 = HCF(4,1) = HCF(13,4) = HCF(56,13) = HCF(69,56) = HCF(263,69) = HCF(332,263) = HCF(595,332) = HCF(927,595) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 445 > 1, we apply the division lemma to 445 and 1, to get
445 = 1 x 445 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 445 is 1
Notice that 1 = HCF(445,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 927, 595, 445?
Answer: HCF of 927, 595, 445 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 927, 595, 445 using Euclid's Algorithm?
Answer: For arbitrary numbers 927, 595, 445 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.