Highest Common Factor of 928, 521, 24 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 928, 521, 24 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 928, 521, 24 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 928, 521, 24 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 928, 521, 24 is 1.

HCF(928, 521, 24) = 1

HCF of 928, 521, 24 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 928, 521, 24 is 1.

Highest Common Factor of 928,521,24 using Euclid's algorithm

Highest Common Factor of 928,521,24 is 1

Step 1: Since 928 > 521, we apply the division lemma to 928 and 521, to get

928 = 521 x 1 + 407

Step 2: Since the reminder 521 ≠ 0, we apply division lemma to 407 and 521, to get

521 = 407 x 1 + 114

Step 3: We consider the new divisor 407 and the new remainder 114, and apply the division lemma to get

407 = 114 x 3 + 65

We consider the new divisor 114 and the new remainder 65,and apply the division lemma to get

114 = 65 x 1 + 49

We consider the new divisor 65 and the new remainder 49,and apply the division lemma to get

65 = 49 x 1 + 16

We consider the new divisor 49 and the new remainder 16,and apply the division lemma to get

49 = 16 x 3 + 1

We consider the new divisor 16 and the new remainder 1,and apply the division lemma to get

16 = 1 x 16 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 928 and 521 is 1

Notice that 1 = HCF(16,1) = HCF(49,16) = HCF(65,49) = HCF(114,65) = HCF(407,114) = HCF(521,407) = HCF(928,521) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 24 > 1, we apply the division lemma to 24 and 1, to get

24 = 1 x 24 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 24 is 1

Notice that 1 = HCF(24,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 928, 521, 24 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 928, 521, 24?

Answer: HCF of 928, 521, 24 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 928, 521, 24 using Euclid's Algorithm?

Answer: For arbitrary numbers 928, 521, 24 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.