Highest Common Factor of 929, 389, 509 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 929, 389, 509 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 929, 389, 509 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 929, 389, 509 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 929, 389, 509 is 1.

HCF(929, 389, 509) = 1

HCF of 929, 389, 509 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 929, 389, 509 is 1.

Highest Common Factor of 929,389,509 using Euclid's algorithm

Highest Common Factor of 929,389,509 is 1

Step 1: Since 929 > 389, we apply the division lemma to 929 and 389, to get

929 = 389 x 2 + 151

Step 2: Since the reminder 389 ≠ 0, we apply division lemma to 151 and 389, to get

389 = 151 x 2 + 87

Step 3: We consider the new divisor 151 and the new remainder 87, and apply the division lemma to get

151 = 87 x 1 + 64

We consider the new divisor 87 and the new remainder 64,and apply the division lemma to get

87 = 64 x 1 + 23

We consider the new divisor 64 and the new remainder 23,and apply the division lemma to get

64 = 23 x 2 + 18

We consider the new divisor 23 and the new remainder 18,and apply the division lemma to get

23 = 18 x 1 + 5

We consider the new divisor 18 and the new remainder 5,and apply the division lemma to get

18 = 5 x 3 + 3

We consider the new divisor 5 and the new remainder 3,and apply the division lemma to get

5 = 3 x 1 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 929 and 389 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(5,3) = HCF(18,5) = HCF(23,18) = HCF(64,23) = HCF(87,64) = HCF(151,87) = HCF(389,151) = HCF(929,389) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 509 > 1, we apply the division lemma to 509 and 1, to get

509 = 1 x 509 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 509 is 1

Notice that 1 = HCF(509,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 929, 389, 509 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 929, 389, 509?

Answer: HCF of 929, 389, 509 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 929, 389, 509 using Euclid's Algorithm?

Answer: For arbitrary numbers 929, 389, 509 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.