Highest Common Factor of 93, 50, 889, 372 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 93, 50, 889, 372 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 93, 50, 889, 372 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 93, 50, 889, 372 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 93, 50, 889, 372 is 1.

HCF(93, 50, 889, 372) = 1

HCF of 93, 50, 889, 372 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 93, 50, 889, 372 is 1.

Highest Common Factor of 93,50,889,372 using Euclid's algorithm

Highest Common Factor of 93,50,889,372 is 1

Step 1: Since 93 > 50, we apply the division lemma to 93 and 50, to get

93 = 50 x 1 + 43

Step 2: Since the reminder 50 ≠ 0, we apply division lemma to 43 and 50, to get

50 = 43 x 1 + 7

Step 3: We consider the new divisor 43 and the new remainder 7, and apply the division lemma to get

43 = 7 x 6 + 1

We consider the new divisor 7 and the new remainder 1, and apply the division lemma to get

7 = 1 x 7 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 93 and 50 is 1

Notice that 1 = HCF(7,1) = HCF(43,7) = HCF(50,43) = HCF(93,50) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 889 > 1, we apply the division lemma to 889 and 1, to get

889 = 1 x 889 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 889 is 1

Notice that 1 = HCF(889,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 372 > 1, we apply the division lemma to 372 and 1, to get

372 = 1 x 372 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 372 is 1

Notice that 1 = HCF(372,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 93, 50, 889, 372 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 93, 50, 889, 372?

Answer: HCF of 93, 50, 889, 372 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 93, 50, 889, 372 using Euclid's Algorithm?

Answer: For arbitrary numbers 93, 50, 889, 372 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.