Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 930, 204, 409 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 930, 204, 409 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 930, 204, 409 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 930, 204, 409 is 1.
HCF(930, 204, 409) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 930, 204, 409 is 1.
Step 1: Since 930 > 204, we apply the division lemma to 930 and 204, to get
930 = 204 x 4 + 114
Step 2: Since the reminder 204 ≠ 0, we apply division lemma to 114 and 204, to get
204 = 114 x 1 + 90
Step 3: We consider the new divisor 114 and the new remainder 90, and apply the division lemma to get
114 = 90 x 1 + 24
We consider the new divisor 90 and the new remainder 24,and apply the division lemma to get
90 = 24 x 3 + 18
We consider the new divisor 24 and the new remainder 18,and apply the division lemma to get
24 = 18 x 1 + 6
We consider the new divisor 18 and the new remainder 6,and apply the division lemma to get
18 = 6 x 3 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 6, the HCF of 930 and 204 is 6
Notice that 6 = HCF(18,6) = HCF(24,18) = HCF(90,24) = HCF(114,90) = HCF(204,114) = HCF(930,204) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 409 > 6, we apply the division lemma to 409 and 6, to get
409 = 6 x 68 + 1
Step 2: Since the reminder 6 ≠ 0, we apply division lemma to 1 and 6, to get
6 = 1 x 6 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 6 and 409 is 1
Notice that 1 = HCF(6,1) = HCF(409,6) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 930, 204, 409?
Answer: HCF of 930, 204, 409 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 930, 204, 409 using Euclid's Algorithm?
Answer: For arbitrary numbers 930, 204, 409 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.