Highest Common Factor of 930, 2985, 2596 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 930, 2985, 2596 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 930, 2985, 2596 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 930, 2985, 2596 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 930, 2985, 2596 is 1.

HCF(930, 2985, 2596) = 1

HCF of 930, 2985, 2596 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 930, 2985, 2596 is 1.

Highest Common Factor of 930,2985,2596 using Euclid's algorithm

Highest Common Factor of 930,2985,2596 is 1

Step 1: Since 2985 > 930, we apply the division lemma to 2985 and 930, to get

2985 = 930 x 3 + 195

Step 2: Since the reminder 930 ≠ 0, we apply division lemma to 195 and 930, to get

930 = 195 x 4 + 150

Step 3: We consider the new divisor 195 and the new remainder 150, and apply the division lemma to get

195 = 150 x 1 + 45

We consider the new divisor 150 and the new remainder 45,and apply the division lemma to get

150 = 45 x 3 + 15

We consider the new divisor 45 and the new remainder 15,and apply the division lemma to get

45 = 15 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 15, the HCF of 930 and 2985 is 15

Notice that 15 = HCF(45,15) = HCF(150,45) = HCF(195,150) = HCF(930,195) = HCF(2985,930) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 2596 > 15, we apply the division lemma to 2596 and 15, to get

2596 = 15 x 173 + 1

Step 2: Since the reminder 15 ≠ 0, we apply division lemma to 1 and 15, to get

15 = 1 x 15 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 15 and 2596 is 1

Notice that 1 = HCF(15,1) = HCF(2596,15) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 930, 2985, 2596 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 930, 2985, 2596?

Answer: HCF of 930, 2985, 2596 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 930, 2985, 2596 using Euclid's Algorithm?

Answer: For arbitrary numbers 930, 2985, 2596 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.