Highest Common Factor of 931, 3411 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 931, 3411 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 931, 3411 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 931, 3411 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 931, 3411 is 1.

HCF(931, 3411) = 1

HCF of 931, 3411 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 931, 3411 is 1.

Highest Common Factor of 931,3411 using Euclid's algorithm

Highest Common Factor of 931,3411 is 1

Step 1: Since 3411 > 931, we apply the division lemma to 3411 and 931, to get

3411 = 931 x 3 + 618

Step 2: Since the reminder 931 ≠ 0, we apply division lemma to 618 and 931, to get

931 = 618 x 1 + 313

Step 3: We consider the new divisor 618 and the new remainder 313, and apply the division lemma to get

618 = 313 x 1 + 305

We consider the new divisor 313 and the new remainder 305,and apply the division lemma to get

313 = 305 x 1 + 8

We consider the new divisor 305 and the new remainder 8,and apply the division lemma to get

305 = 8 x 38 + 1

We consider the new divisor 8 and the new remainder 1,and apply the division lemma to get

8 = 1 x 8 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 931 and 3411 is 1

Notice that 1 = HCF(8,1) = HCF(305,8) = HCF(313,305) = HCF(618,313) = HCF(931,618) = HCF(3411,931) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 931, 3411 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 931, 3411?

Answer: HCF of 931, 3411 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 931, 3411 using Euclid's Algorithm?

Answer: For arbitrary numbers 931, 3411 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.