Highest Common Factor of 934, 251, 723 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 934, 251, 723 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 934, 251, 723 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 934, 251, 723 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 934, 251, 723 is 1.

HCF(934, 251, 723) = 1

HCF of 934, 251, 723 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 934, 251, 723 is 1.

Highest Common Factor of 934,251,723 using Euclid's algorithm

Highest Common Factor of 934,251,723 is 1

Step 1: Since 934 > 251, we apply the division lemma to 934 and 251, to get

934 = 251 x 3 + 181

Step 2: Since the reminder 251 ≠ 0, we apply division lemma to 181 and 251, to get

251 = 181 x 1 + 70

Step 3: We consider the new divisor 181 and the new remainder 70, and apply the division lemma to get

181 = 70 x 2 + 41

We consider the new divisor 70 and the new remainder 41,and apply the division lemma to get

70 = 41 x 1 + 29

We consider the new divisor 41 and the new remainder 29,and apply the division lemma to get

41 = 29 x 1 + 12

We consider the new divisor 29 and the new remainder 12,and apply the division lemma to get

29 = 12 x 2 + 5

We consider the new divisor 12 and the new remainder 5,and apply the division lemma to get

12 = 5 x 2 + 2

We consider the new divisor 5 and the new remainder 2,and apply the division lemma to get

5 = 2 x 2 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 934 and 251 is 1

Notice that 1 = HCF(2,1) = HCF(5,2) = HCF(12,5) = HCF(29,12) = HCF(41,29) = HCF(70,41) = HCF(181,70) = HCF(251,181) = HCF(934,251) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 723 > 1, we apply the division lemma to 723 and 1, to get

723 = 1 x 723 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 723 is 1

Notice that 1 = HCF(723,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 934, 251, 723 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 934, 251, 723?

Answer: HCF of 934, 251, 723 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 934, 251, 723 using Euclid's Algorithm?

Answer: For arbitrary numbers 934, 251, 723 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.