Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 934, 839, 863 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 934, 839, 863 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 934, 839, 863 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 934, 839, 863 is 1.
HCF(934, 839, 863) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 934, 839, 863 is 1.
Step 1: Since 934 > 839, we apply the division lemma to 934 and 839, to get
934 = 839 x 1 + 95
Step 2: Since the reminder 839 ≠ 0, we apply division lemma to 95 and 839, to get
839 = 95 x 8 + 79
Step 3: We consider the new divisor 95 and the new remainder 79, and apply the division lemma to get
95 = 79 x 1 + 16
We consider the new divisor 79 and the new remainder 16,and apply the division lemma to get
79 = 16 x 4 + 15
We consider the new divisor 16 and the new remainder 15,and apply the division lemma to get
16 = 15 x 1 + 1
We consider the new divisor 15 and the new remainder 1,and apply the division lemma to get
15 = 1 x 15 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 934 and 839 is 1
Notice that 1 = HCF(15,1) = HCF(16,15) = HCF(79,16) = HCF(95,79) = HCF(839,95) = HCF(934,839) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 863 > 1, we apply the division lemma to 863 and 1, to get
863 = 1 x 863 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 863 is 1
Notice that 1 = HCF(863,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 934, 839, 863?
Answer: HCF of 934, 839, 863 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 934, 839, 863 using Euclid's Algorithm?
Answer: For arbitrary numbers 934, 839, 863 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.