Highest Common Factor of 935, 790 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 935, 790 i.e. 5 the largest integer that leaves a remainder zero for all numbers.

HCF of 935, 790 is 5 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 935, 790 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 935, 790 is 5.

HCF(935, 790) = 5

HCF of 935, 790 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 935, 790 is 5.

Highest Common Factor of 935,790 using Euclid's algorithm

Highest Common Factor of 935,790 is 5

Step 1: Since 935 > 790, we apply the division lemma to 935 and 790, to get

935 = 790 x 1 + 145

Step 2: Since the reminder 790 ≠ 0, we apply division lemma to 145 and 790, to get

790 = 145 x 5 + 65

Step 3: We consider the new divisor 145 and the new remainder 65, and apply the division lemma to get

145 = 65 x 2 + 15

We consider the new divisor 65 and the new remainder 15,and apply the division lemma to get

65 = 15 x 4 + 5

We consider the new divisor 15 and the new remainder 5,and apply the division lemma to get

15 = 5 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 5, the HCF of 935 and 790 is 5

Notice that 5 = HCF(15,5) = HCF(65,15) = HCF(145,65) = HCF(790,145) = HCF(935,790) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 935, 790 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 935, 790?

Answer: HCF of 935, 790 is 5 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 935, 790 using Euclid's Algorithm?

Answer: For arbitrary numbers 935, 790 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.