Highest Common Factor of 936, 468, 575 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 936, 468, 575 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 936, 468, 575 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 936, 468, 575 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 936, 468, 575 is 1.

HCF(936, 468, 575) = 1

HCF of 936, 468, 575 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 936, 468, 575 is 1.

Highest Common Factor of 936,468,575 using Euclid's algorithm

Highest Common Factor of 936,468,575 is 1

Step 1: Since 936 > 468, we apply the division lemma to 936 and 468, to get

936 = 468 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 468, the HCF of 936 and 468 is 468

Notice that 468 = HCF(936,468) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 575 > 468, we apply the division lemma to 575 and 468, to get

575 = 468 x 1 + 107

Step 2: Since the reminder 468 ≠ 0, we apply division lemma to 107 and 468, to get

468 = 107 x 4 + 40

Step 3: We consider the new divisor 107 and the new remainder 40, and apply the division lemma to get

107 = 40 x 2 + 27

We consider the new divisor 40 and the new remainder 27,and apply the division lemma to get

40 = 27 x 1 + 13

We consider the new divisor 27 and the new remainder 13,and apply the division lemma to get

27 = 13 x 2 + 1

We consider the new divisor 13 and the new remainder 1,and apply the division lemma to get

13 = 1 x 13 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 468 and 575 is 1

Notice that 1 = HCF(13,1) = HCF(27,13) = HCF(40,27) = HCF(107,40) = HCF(468,107) = HCF(575,468) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 936, 468, 575 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 936, 468, 575?

Answer: HCF of 936, 468, 575 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 936, 468, 575 using Euclid's Algorithm?

Answer: For arbitrary numbers 936, 468, 575 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.