Highest Common Factor of 936, 5332 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 936, 5332 i.e. 4 the largest integer that leaves a remainder zero for all numbers.

HCF of 936, 5332 is 4 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 936, 5332 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 936, 5332 is 4.

HCF(936, 5332) = 4

HCF of 936, 5332 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 936, 5332 is 4.

Highest Common Factor of 936,5332 using Euclid's algorithm

Highest Common Factor of 936,5332 is 4

Step 1: Since 5332 > 936, we apply the division lemma to 5332 and 936, to get

5332 = 936 x 5 + 652

Step 2: Since the reminder 936 ≠ 0, we apply division lemma to 652 and 936, to get

936 = 652 x 1 + 284

Step 3: We consider the new divisor 652 and the new remainder 284, and apply the division lemma to get

652 = 284 x 2 + 84

We consider the new divisor 284 and the new remainder 84,and apply the division lemma to get

284 = 84 x 3 + 32

We consider the new divisor 84 and the new remainder 32,and apply the division lemma to get

84 = 32 x 2 + 20

We consider the new divisor 32 and the new remainder 20,and apply the division lemma to get

32 = 20 x 1 + 12

We consider the new divisor 20 and the new remainder 12,and apply the division lemma to get

20 = 12 x 1 + 8

We consider the new divisor 12 and the new remainder 8,and apply the division lemma to get

12 = 8 x 1 + 4

We consider the new divisor 8 and the new remainder 4,and apply the division lemma to get

8 = 4 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 4, the HCF of 936 and 5332 is 4

Notice that 4 = HCF(8,4) = HCF(12,8) = HCF(20,12) = HCF(32,20) = HCF(84,32) = HCF(284,84) = HCF(652,284) = HCF(936,652) = HCF(5332,936) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 936, 5332 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 936, 5332?

Answer: HCF of 936, 5332 is 4 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 936, 5332 using Euclid's Algorithm?

Answer: For arbitrary numbers 936, 5332 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.