Highest Common Factor of 936, 603, 163 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 936, 603, 163 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 936, 603, 163 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 936, 603, 163 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 936, 603, 163 is 1.

HCF(936, 603, 163) = 1

HCF of 936, 603, 163 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 936, 603, 163 is 1.

Highest Common Factor of 936,603,163 using Euclid's algorithm

Highest Common Factor of 936,603,163 is 1

Step 1: Since 936 > 603, we apply the division lemma to 936 and 603, to get

936 = 603 x 1 + 333

Step 2: Since the reminder 603 ≠ 0, we apply division lemma to 333 and 603, to get

603 = 333 x 1 + 270

Step 3: We consider the new divisor 333 and the new remainder 270, and apply the division lemma to get

333 = 270 x 1 + 63

We consider the new divisor 270 and the new remainder 63,and apply the division lemma to get

270 = 63 x 4 + 18

We consider the new divisor 63 and the new remainder 18,and apply the division lemma to get

63 = 18 x 3 + 9

We consider the new divisor 18 and the new remainder 9,and apply the division lemma to get

18 = 9 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 9, the HCF of 936 and 603 is 9

Notice that 9 = HCF(18,9) = HCF(63,18) = HCF(270,63) = HCF(333,270) = HCF(603,333) = HCF(936,603) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 163 > 9, we apply the division lemma to 163 and 9, to get

163 = 9 x 18 + 1

Step 2: Since the reminder 9 ≠ 0, we apply division lemma to 1 and 9, to get

9 = 1 x 9 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 9 and 163 is 1

Notice that 1 = HCF(9,1) = HCF(163,9) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 936, 603, 163 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 936, 603, 163?

Answer: HCF of 936, 603, 163 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 936, 603, 163 using Euclid's Algorithm?

Answer: For arbitrary numbers 936, 603, 163 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.