Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 938, 321, 488 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 938, 321, 488 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 938, 321, 488 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 938, 321, 488 is 1.
HCF(938, 321, 488) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 938, 321, 488 is 1.
Step 1: Since 938 > 321, we apply the division lemma to 938 and 321, to get
938 = 321 x 2 + 296
Step 2: Since the reminder 321 ≠ 0, we apply division lemma to 296 and 321, to get
321 = 296 x 1 + 25
Step 3: We consider the new divisor 296 and the new remainder 25, and apply the division lemma to get
296 = 25 x 11 + 21
We consider the new divisor 25 and the new remainder 21,and apply the division lemma to get
25 = 21 x 1 + 4
We consider the new divisor 21 and the new remainder 4,and apply the division lemma to get
21 = 4 x 5 + 1
We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get
4 = 1 x 4 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 938 and 321 is 1
Notice that 1 = HCF(4,1) = HCF(21,4) = HCF(25,21) = HCF(296,25) = HCF(321,296) = HCF(938,321) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 488 > 1, we apply the division lemma to 488 and 1, to get
488 = 1 x 488 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 488 is 1
Notice that 1 = HCF(488,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 938, 321, 488?
Answer: HCF of 938, 321, 488 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 938, 321, 488 using Euclid's Algorithm?
Answer: For arbitrary numbers 938, 321, 488 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.