Highest Common Factor of 938, 47691 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 938, 47691 i.e. 7 the largest integer that leaves a remainder zero for all numbers.

HCF of 938, 47691 is 7 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 938, 47691 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 938, 47691 is 7.

HCF(938, 47691) = 7

HCF of 938, 47691 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 938, 47691 is 7.

Highest Common Factor of 938,47691 using Euclid's algorithm

Highest Common Factor of 938,47691 is 7

Step 1: Since 47691 > 938, we apply the division lemma to 47691 and 938, to get

47691 = 938 x 50 + 791

Step 2: Since the reminder 938 ≠ 0, we apply division lemma to 791 and 938, to get

938 = 791 x 1 + 147

Step 3: We consider the new divisor 791 and the new remainder 147, and apply the division lemma to get

791 = 147 x 5 + 56

We consider the new divisor 147 and the new remainder 56,and apply the division lemma to get

147 = 56 x 2 + 35

We consider the new divisor 56 and the new remainder 35,and apply the division lemma to get

56 = 35 x 1 + 21

We consider the new divisor 35 and the new remainder 21,and apply the division lemma to get

35 = 21 x 1 + 14

We consider the new divisor 21 and the new remainder 14,and apply the division lemma to get

21 = 14 x 1 + 7

We consider the new divisor 14 and the new remainder 7,and apply the division lemma to get

14 = 7 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 7, the HCF of 938 and 47691 is 7

Notice that 7 = HCF(14,7) = HCF(21,14) = HCF(35,21) = HCF(56,35) = HCF(147,56) = HCF(791,147) = HCF(938,791) = HCF(47691,938) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 938, 47691 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 938, 47691?

Answer: HCF of 938, 47691 is 7 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 938, 47691 using Euclid's Algorithm?

Answer: For arbitrary numbers 938, 47691 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.