Highest Common Factor of 940, 160, 454, 844 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 940, 160, 454, 844 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 940, 160, 454, 844 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 940, 160, 454, 844 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 940, 160, 454, 844 is 2.

HCF(940, 160, 454, 844) = 2

HCF of 940, 160, 454, 844 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 940, 160, 454, 844 is 2.

Highest Common Factor of 940,160,454,844 using Euclid's algorithm

Highest Common Factor of 940,160,454,844 is 2

Step 1: Since 940 > 160, we apply the division lemma to 940 and 160, to get

940 = 160 x 5 + 140

Step 2: Since the reminder 160 ≠ 0, we apply division lemma to 140 and 160, to get

160 = 140 x 1 + 20

Step 3: We consider the new divisor 140 and the new remainder 20, and apply the division lemma to get

140 = 20 x 7 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 20, the HCF of 940 and 160 is 20

Notice that 20 = HCF(140,20) = HCF(160,140) = HCF(940,160) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 454 > 20, we apply the division lemma to 454 and 20, to get

454 = 20 x 22 + 14

Step 2: Since the reminder 20 ≠ 0, we apply division lemma to 14 and 20, to get

20 = 14 x 1 + 6

Step 3: We consider the new divisor 14 and the new remainder 6, and apply the division lemma to get

14 = 6 x 2 + 2

We consider the new divisor 6 and the new remainder 2, and apply the division lemma to get

6 = 2 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 20 and 454 is 2

Notice that 2 = HCF(6,2) = HCF(14,6) = HCF(20,14) = HCF(454,20) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 844 > 2, we apply the division lemma to 844 and 2, to get

844 = 2 x 422 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 2 and 844 is 2

Notice that 2 = HCF(844,2) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 940, 160, 454, 844 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 940, 160, 454, 844?

Answer: HCF of 940, 160, 454, 844 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 940, 160, 454, 844 using Euclid's Algorithm?

Answer: For arbitrary numbers 940, 160, 454, 844 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.