Highest Common Factor of 940, 32555 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 940, 32555 i.e. 5 the largest integer that leaves a remainder zero for all numbers.

HCF of 940, 32555 is 5 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 940, 32555 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 940, 32555 is 5.

HCF(940, 32555) = 5

HCF of 940, 32555 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 940, 32555 is 5.

Highest Common Factor of 940,32555 using Euclid's algorithm

Highest Common Factor of 940,32555 is 5

Step 1: Since 32555 > 940, we apply the division lemma to 32555 and 940, to get

32555 = 940 x 34 + 595

Step 2: Since the reminder 940 ≠ 0, we apply division lemma to 595 and 940, to get

940 = 595 x 1 + 345

Step 3: We consider the new divisor 595 and the new remainder 345, and apply the division lemma to get

595 = 345 x 1 + 250

We consider the new divisor 345 and the new remainder 250,and apply the division lemma to get

345 = 250 x 1 + 95

We consider the new divisor 250 and the new remainder 95,and apply the division lemma to get

250 = 95 x 2 + 60

We consider the new divisor 95 and the new remainder 60,and apply the division lemma to get

95 = 60 x 1 + 35

We consider the new divisor 60 and the new remainder 35,and apply the division lemma to get

60 = 35 x 1 + 25

We consider the new divisor 35 and the new remainder 25,and apply the division lemma to get

35 = 25 x 1 + 10

We consider the new divisor 25 and the new remainder 10,and apply the division lemma to get

25 = 10 x 2 + 5

We consider the new divisor 10 and the new remainder 5,and apply the division lemma to get

10 = 5 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 5, the HCF of 940 and 32555 is 5

Notice that 5 = HCF(10,5) = HCF(25,10) = HCF(35,25) = HCF(60,35) = HCF(95,60) = HCF(250,95) = HCF(345,250) = HCF(595,345) = HCF(940,595) = HCF(32555,940) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 940, 32555 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 940, 32555?

Answer: HCF of 940, 32555 is 5 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 940, 32555 using Euclid's Algorithm?

Answer: For arbitrary numbers 940, 32555 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.