Highest Common Factor of 941, 799 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 941, 799 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 941, 799 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 941, 799 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 941, 799 is 1.

HCF(941, 799) = 1

HCF of 941, 799 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 941, 799 is 1.

Highest Common Factor of 941,799 using Euclid's algorithm

Highest Common Factor of 941,799 is 1

Step 1: Since 941 > 799, we apply the division lemma to 941 and 799, to get

941 = 799 x 1 + 142

Step 2: Since the reminder 799 ≠ 0, we apply division lemma to 142 and 799, to get

799 = 142 x 5 + 89

Step 3: We consider the new divisor 142 and the new remainder 89, and apply the division lemma to get

142 = 89 x 1 + 53

We consider the new divisor 89 and the new remainder 53,and apply the division lemma to get

89 = 53 x 1 + 36

We consider the new divisor 53 and the new remainder 36,and apply the division lemma to get

53 = 36 x 1 + 17

We consider the new divisor 36 and the new remainder 17,and apply the division lemma to get

36 = 17 x 2 + 2

We consider the new divisor 17 and the new remainder 2,and apply the division lemma to get

17 = 2 x 8 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 941 and 799 is 1

Notice that 1 = HCF(2,1) = HCF(17,2) = HCF(36,17) = HCF(53,36) = HCF(89,53) = HCF(142,89) = HCF(799,142) = HCF(941,799) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 941, 799 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 941, 799?

Answer: HCF of 941, 799 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 941, 799 using Euclid's Algorithm?

Answer: For arbitrary numbers 941, 799 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.