Highest Common Factor of 942, 423 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 942, 423 i.e. 3 the largest integer that leaves a remainder zero for all numbers.

HCF of 942, 423 is 3 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 942, 423 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 942, 423 is 3.

HCF(942, 423) = 3

HCF of 942, 423 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 942, 423 is 3.

Highest Common Factor of 942,423 using Euclid's algorithm

Highest Common Factor of 942,423 is 3

Step 1: Since 942 > 423, we apply the division lemma to 942 and 423, to get

942 = 423 x 2 + 96

Step 2: Since the reminder 423 ≠ 0, we apply division lemma to 96 and 423, to get

423 = 96 x 4 + 39

Step 3: We consider the new divisor 96 and the new remainder 39, and apply the division lemma to get

96 = 39 x 2 + 18

We consider the new divisor 39 and the new remainder 18,and apply the division lemma to get

39 = 18 x 2 + 3

We consider the new divisor 18 and the new remainder 3,and apply the division lemma to get

18 = 3 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 942 and 423 is 3

Notice that 3 = HCF(18,3) = HCF(39,18) = HCF(96,39) = HCF(423,96) = HCF(942,423) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 942, 423 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 942, 423?

Answer: HCF of 942, 423 is 3 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 942, 423 using Euclid's Algorithm?

Answer: For arbitrary numbers 942, 423 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.