Highest Common Factor of 943, 699, 338 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 943, 699, 338 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 943, 699, 338 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 943, 699, 338 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 943, 699, 338 is 1.

HCF(943, 699, 338) = 1

HCF of 943, 699, 338 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 943, 699, 338 is 1.

Highest Common Factor of 943,699,338 using Euclid's algorithm

Highest Common Factor of 943,699,338 is 1

Step 1: Since 943 > 699, we apply the division lemma to 943 and 699, to get

943 = 699 x 1 + 244

Step 2: Since the reminder 699 ≠ 0, we apply division lemma to 244 and 699, to get

699 = 244 x 2 + 211

Step 3: We consider the new divisor 244 and the new remainder 211, and apply the division lemma to get

244 = 211 x 1 + 33

We consider the new divisor 211 and the new remainder 33,and apply the division lemma to get

211 = 33 x 6 + 13

We consider the new divisor 33 and the new remainder 13,and apply the division lemma to get

33 = 13 x 2 + 7

We consider the new divisor 13 and the new remainder 7,and apply the division lemma to get

13 = 7 x 1 + 6

We consider the new divisor 7 and the new remainder 6,and apply the division lemma to get

7 = 6 x 1 + 1

We consider the new divisor 6 and the new remainder 1,and apply the division lemma to get

6 = 1 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 943 and 699 is 1

Notice that 1 = HCF(6,1) = HCF(7,6) = HCF(13,7) = HCF(33,13) = HCF(211,33) = HCF(244,211) = HCF(699,244) = HCF(943,699) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 338 > 1, we apply the division lemma to 338 and 1, to get

338 = 1 x 338 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 338 is 1

Notice that 1 = HCF(338,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 943, 699, 338 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 943, 699, 338?

Answer: HCF of 943, 699, 338 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 943, 699, 338 using Euclid's Algorithm?

Answer: For arbitrary numbers 943, 699, 338 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.