Highest Common Factor of 9433, 5388 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 9433, 5388 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 9433, 5388 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 9433, 5388 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 9433, 5388 is 1.

HCF(9433, 5388) = 1

HCF of 9433, 5388 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 9433, 5388 is 1.

Highest Common Factor of 9433,5388 using Euclid's algorithm

Highest Common Factor of 9433,5388 is 1

Step 1: Since 9433 > 5388, we apply the division lemma to 9433 and 5388, to get

9433 = 5388 x 1 + 4045

Step 2: Since the reminder 5388 ≠ 0, we apply division lemma to 4045 and 5388, to get

5388 = 4045 x 1 + 1343

Step 3: We consider the new divisor 4045 and the new remainder 1343, and apply the division lemma to get

4045 = 1343 x 3 + 16

We consider the new divisor 1343 and the new remainder 16,and apply the division lemma to get

1343 = 16 x 83 + 15

We consider the new divisor 16 and the new remainder 15,and apply the division lemma to get

16 = 15 x 1 + 1

We consider the new divisor 15 and the new remainder 1,and apply the division lemma to get

15 = 1 x 15 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 9433 and 5388 is 1

Notice that 1 = HCF(15,1) = HCF(16,15) = HCF(1343,16) = HCF(4045,1343) = HCF(5388,4045) = HCF(9433,5388) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 9433, 5388 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 9433, 5388?

Answer: HCF of 9433, 5388 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 9433, 5388 using Euclid's Algorithm?

Answer: For arbitrary numbers 9433, 5388 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.