Highest Common Factor of 946, 415, 560, 499 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 946, 415, 560, 499 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 946, 415, 560, 499 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 946, 415, 560, 499 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 946, 415, 560, 499 is 1.

HCF(946, 415, 560, 499) = 1

HCF of 946, 415, 560, 499 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 946, 415, 560, 499 is 1.

Highest Common Factor of 946,415,560,499 using Euclid's algorithm

Highest Common Factor of 946,415,560,499 is 1

Step 1: Since 946 > 415, we apply the division lemma to 946 and 415, to get

946 = 415 x 2 + 116

Step 2: Since the reminder 415 ≠ 0, we apply division lemma to 116 and 415, to get

415 = 116 x 3 + 67

Step 3: We consider the new divisor 116 and the new remainder 67, and apply the division lemma to get

116 = 67 x 1 + 49

We consider the new divisor 67 and the new remainder 49,and apply the division lemma to get

67 = 49 x 1 + 18

We consider the new divisor 49 and the new remainder 18,and apply the division lemma to get

49 = 18 x 2 + 13

We consider the new divisor 18 and the new remainder 13,and apply the division lemma to get

18 = 13 x 1 + 5

We consider the new divisor 13 and the new remainder 5,and apply the division lemma to get

13 = 5 x 2 + 3

We consider the new divisor 5 and the new remainder 3,and apply the division lemma to get

5 = 3 x 1 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 946 and 415 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(5,3) = HCF(13,5) = HCF(18,13) = HCF(49,18) = HCF(67,49) = HCF(116,67) = HCF(415,116) = HCF(946,415) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 560 > 1, we apply the division lemma to 560 and 1, to get

560 = 1 x 560 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 560 is 1

Notice that 1 = HCF(560,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 499 > 1, we apply the division lemma to 499 and 1, to get

499 = 1 x 499 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 499 is 1

Notice that 1 = HCF(499,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 946, 415, 560, 499 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 946, 415, 560, 499?

Answer: HCF of 946, 415, 560, 499 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 946, 415, 560, 499 using Euclid's Algorithm?

Answer: For arbitrary numbers 946, 415, 560, 499 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.