Highest Common Factor of 947, 778, 788 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 947, 778, 788 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 947, 778, 788 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 947, 778, 788 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 947, 778, 788 is 1.

HCF(947, 778, 788) = 1

HCF of 947, 778, 788 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 947, 778, 788 is 1.

Highest Common Factor of 947,778,788 using Euclid's algorithm

Highest Common Factor of 947,778,788 is 1

Step 1: Since 947 > 778, we apply the division lemma to 947 and 778, to get

947 = 778 x 1 + 169

Step 2: Since the reminder 778 ≠ 0, we apply division lemma to 169 and 778, to get

778 = 169 x 4 + 102

Step 3: We consider the new divisor 169 and the new remainder 102, and apply the division lemma to get

169 = 102 x 1 + 67

We consider the new divisor 102 and the new remainder 67,and apply the division lemma to get

102 = 67 x 1 + 35

We consider the new divisor 67 and the new remainder 35,and apply the division lemma to get

67 = 35 x 1 + 32

We consider the new divisor 35 and the new remainder 32,and apply the division lemma to get

35 = 32 x 1 + 3

We consider the new divisor 32 and the new remainder 3,and apply the division lemma to get

32 = 3 x 10 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 947 and 778 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(32,3) = HCF(35,32) = HCF(67,35) = HCF(102,67) = HCF(169,102) = HCF(778,169) = HCF(947,778) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 788 > 1, we apply the division lemma to 788 and 1, to get

788 = 1 x 788 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 788 is 1

Notice that 1 = HCF(788,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 947, 778, 788 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 947, 778, 788?

Answer: HCF of 947, 778, 788 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 947, 778, 788 using Euclid's Algorithm?

Answer: For arbitrary numbers 947, 778, 788 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.