Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 948, 265 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 948, 265 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 948, 265 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 948, 265 is 1.
HCF(948, 265) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 948, 265 is 1.
Step 1: Since 948 > 265, we apply the division lemma to 948 and 265, to get
948 = 265 x 3 + 153
Step 2: Since the reminder 265 ≠ 0, we apply division lemma to 153 and 265, to get
265 = 153 x 1 + 112
Step 3: We consider the new divisor 153 and the new remainder 112, and apply the division lemma to get
153 = 112 x 1 + 41
We consider the new divisor 112 and the new remainder 41,and apply the division lemma to get
112 = 41 x 2 + 30
We consider the new divisor 41 and the new remainder 30,and apply the division lemma to get
41 = 30 x 1 + 11
We consider the new divisor 30 and the new remainder 11,and apply the division lemma to get
30 = 11 x 2 + 8
We consider the new divisor 11 and the new remainder 8,and apply the division lemma to get
11 = 8 x 1 + 3
We consider the new divisor 8 and the new remainder 3,and apply the division lemma to get
8 = 3 x 2 + 2
We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get
3 = 2 x 1 + 1
We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 948 and 265 is 1
Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(8,3) = HCF(11,8) = HCF(30,11) = HCF(41,30) = HCF(112,41) = HCF(153,112) = HCF(265,153) = HCF(948,265) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 948, 265?
Answer: HCF of 948, 265 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 948, 265 using Euclid's Algorithm?
Answer: For arbitrary numbers 948, 265 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.