Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 950, 624, 368 i.e. 2 the largest integer that leaves a remainder zero for all numbers.
HCF of 950, 624, 368 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 950, 624, 368 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 950, 624, 368 is 2.
HCF(950, 624, 368) = 2
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 950, 624, 368 is 2.
Step 1: Since 950 > 624, we apply the division lemma to 950 and 624, to get
950 = 624 x 1 + 326
Step 2: Since the reminder 624 ≠ 0, we apply division lemma to 326 and 624, to get
624 = 326 x 1 + 298
Step 3: We consider the new divisor 326 and the new remainder 298, and apply the division lemma to get
326 = 298 x 1 + 28
We consider the new divisor 298 and the new remainder 28,and apply the division lemma to get
298 = 28 x 10 + 18
We consider the new divisor 28 and the new remainder 18,and apply the division lemma to get
28 = 18 x 1 + 10
We consider the new divisor 18 and the new remainder 10,and apply the division lemma to get
18 = 10 x 1 + 8
We consider the new divisor 10 and the new remainder 8,and apply the division lemma to get
10 = 8 x 1 + 2
We consider the new divisor 8 and the new remainder 2,and apply the division lemma to get
8 = 2 x 4 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 950 and 624 is 2
Notice that 2 = HCF(8,2) = HCF(10,8) = HCF(18,10) = HCF(28,18) = HCF(298,28) = HCF(326,298) = HCF(624,326) = HCF(950,624) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 368 > 2, we apply the division lemma to 368 and 2, to get
368 = 2 x 184 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 2 and 368 is 2
Notice that 2 = HCF(368,2) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 950, 624, 368?
Answer: HCF of 950, 624, 368 is 2 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 950, 624, 368 using Euclid's Algorithm?
Answer: For arbitrary numbers 950, 624, 368 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.