Highest Common Factor of 950, 711, 223, 19 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 950, 711, 223, 19 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 950, 711, 223, 19 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 950, 711, 223, 19 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 950, 711, 223, 19 is 1.

HCF(950, 711, 223, 19) = 1

HCF of 950, 711, 223, 19 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 950, 711, 223, 19 is 1.

Highest Common Factor of 950,711,223,19 using Euclid's algorithm

Highest Common Factor of 950,711,223,19 is 1

Step 1: Since 950 > 711, we apply the division lemma to 950 and 711, to get

950 = 711 x 1 + 239

Step 2: Since the reminder 711 ≠ 0, we apply division lemma to 239 and 711, to get

711 = 239 x 2 + 233

Step 3: We consider the new divisor 239 and the new remainder 233, and apply the division lemma to get

239 = 233 x 1 + 6

We consider the new divisor 233 and the new remainder 6,and apply the division lemma to get

233 = 6 x 38 + 5

We consider the new divisor 6 and the new remainder 5,and apply the division lemma to get

6 = 5 x 1 + 1

We consider the new divisor 5 and the new remainder 1,and apply the division lemma to get

5 = 1 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 950 and 711 is 1

Notice that 1 = HCF(5,1) = HCF(6,5) = HCF(233,6) = HCF(239,233) = HCF(711,239) = HCF(950,711) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 223 > 1, we apply the division lemma to 223 and 1, to get

223 = 1 x 223 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 223 is 1

Notice that 1 = HCF(223,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 19 > 1, we apply the division lemma to 19 and 1, to get

19 = 1 x 19 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 19 is 1

Notice that 1 = HCF(19,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 950, 711, 223, 19 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 950, 711, 223, 19?

Answer: HCF of 950, 711, 223, 19 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 950, 711, 223, 19 using Euclid's Algorithm?

Answer: For arbitrary numbers 950, 711, 223, 19 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.