Highest Common Factor of 9504, 3924 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 9504, 3924 i.e. 36 the largest integer that leaves a remainder zero for all numbers.

HCF of 9504, 3924 is 36 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 9504, 3924 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 9504, 3924 is 36.

HCF(9504, 3924) = 36

HCF of 9504, 3924 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 9504, 3924 is 36.

Highest Common Factor of 9504,3924 using Euclid's algorithm

Highest Common Factor of 9504,3924 is 36

Step 1: Since 9504 > 3924, we apply the division lemma to 9504 and 3924, to get

9504 = 3924 x 2 + 1656

Step 2: Since the reminder 3924 ≠ 0, we apply division lemma to 1656 and 3924, to get

3924 = 1656 x 2 + 612

Step 3: We consider the new divisor 1656 and the new remainder 612, and apply the division lemma to get

1656 = 612 x 2 + 432

We consider the new divisor 612 and the new remainder 432,and apply the division lemma to get

612 = 432 x 1 + 180

We consider the new divisor 432 and the new remainder 180,and apply the division lemma to get

432 = 180 x 2 + 72

We consider the new divisor 180 and the new remainder 72,and apply the division lemma to get

180 = 72 x 2 + 36

We consider the new divisor 72 and the new remainder 36,and apply the division lemma to get

72 = 36 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 36, the HCF of 9504 and 3924 is 36

Notice that 36 = HCF(72,36) = HCF(180,72) = HCF(432,180) = HCF(612,432) = HCF(1656,612) = HCF(3924,1656) = HCF(9504,3924) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 9504, 3924 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 9504, 3924?

Answer: HCF of 9504, 3924 is 36 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 9504, 3924 using Euclid's Algorithm?

Answer: For arbitrary numbers 9504, 3924 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.