Highest Common Factor of 952, 11982 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 952, 11982 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 952, 11982 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 952, 11982 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 952, 11982 is 2.

HCF(952, 11982) = 2

HCF of 952, 11982 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 952, 11982 is 2.

Highest Common Factor of 952,11982 using Euclid's algorithm

Highest Common Factor of 952,11982 is 2

Step 1: Since 11982 > 952, we apply the division lemma to 11982 and 952, to get

11982 = 952 x 12 + 558

Step 2: Since the reminder 952 ≠ 0, we apply division lemma to 558 and 952, to get

952 = 558 x 1 + 394

Step 3: We consider the new divisor 558 and the new remainder 394, and apply the division lemma to get

558 = 394 x 1 + 164

We consider the new divisor 394 and the new remainder 164,and apply the division lemma to get

394 = 164 x 2 + 66

We consider the new divisor 164 and the new remainder 66,and apply the division lemma to get

164 = 66 x 2 + 32

We consider the new divisor 66 and the new remainder 32,and apply the division lemma to get

66 = 32 x 2 + 2

We consider the new divisor 32 and the new remainder 2,and apply the division lemma to get

32 = 2 x 16 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 952 and 11982 is 2

Notice that 2 = HCF(32,2) = HCF(66,32) = HCF(164,66) = HCF(394,164) = HCF(558,394) = HCF(952,558) = HCF(11982,952) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 952, 11982 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 952, 11982?

Answer: HCF of 952, 11982 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 952, 11982 using Euclid's Algorithm?

Answer: For arbitrary numbers 952, 11982 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.