Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 952, 595, 617 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 952, 595, 617 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 952, 595, 617 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 952, 595, 617 is 1.
HCF(952, 595, 617) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 952, 595, 617 is 1.
Step 1: Since 952 > 595, we apply the division lemma to 952 and 595, to get
952 = 595 x 1 + 357
Step 2: Since the reminder 595 ≠ 0, we apply division lemma to 357 and 595, to get
595 = 357 x 1 + 238
Step 3: We consider the new divisor 357 and the new remainder 238, and apply the division lemma to get
357 = 238 x 1 + 119
We consider the new divisor 238 and the new remainder 119, and apply the division lemma to get
238 = 119 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 119, the HCF of 952 and 595 is 119
Notice that 119 = HCF(238,119) = HCF(357,238) = HCF(595,357) = HCF(952,595) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 617 > 119, we apply the division lemma to 617 and 119, to get
617 = 119 x 5 + 22
Step 2: Since the reminder 119 ≠ 0, we apply division lemma to 22 and 119, to get
119 = 22 x 5 + 9
Step 3: We consider the new divisor 22 and the new remainder 9, and apply the division lemma to get
22 = 9 x 2 + 4
We consider the new divisor 9 and the new remainder 4,and apply the division lemma to get
9 = 4 x 2 + 1
We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get
4 = 1 x 4 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 119 and 617 is 1
Notice that 1 = HCF(4,1) = HCF(9,4) = HCF(22,9) = HCF(119,22) = HCF(617,119) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 952, 595, 617?
Answer: HCF of 952, 595, 617 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 952, 595, 617 using Euclid's Algorithm?
Answer: For arbitrary numbers 952, 595, 617 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.