Highest Common Factor of 953, 677, 435 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 953, 677, 435 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 953, 677, 435 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 953, 677, 435 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 953, 677, 435 is 1.

HCF(953, 677, 435) = 1

HCF of 953, 677, 435 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 953, 677, 435 is 1.

Highest Common Factor of 953,677,435 using Euclid's algorithm

Highest Common Factor of 953,677,435 is 1

Step 1: Since 953 > 677, we apply the division lemma to 953 and 677, to get

953 = 677 x 1 + 276

Step 2: Since the reminder 677 ≠ 0, we apply division lemma to 276 and 677, to get

677 = 276 x 2 + 125

Step 3: We consider the new divisor 276 and the new remainder 125, and apply the division lemma to get

276 = 125 x 2 + 26

We consider the new divisor 125 and the new remainder 26,and apply the division lemma to get

125 = 26 x 4 + 21

We consider the new divisor 26 and the new remainder 21,and apply the division lemma to get

26 = 21 x 1 + 5

We consider the new divisor 21 and the new remainder 5,and apply the division lemma to get

21 = 5 x 4 + 1

We consider the new divisor 5 and the new remainder 1,and apply the division lemma to get

5 = 1 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 953 and 677 is 1

Notice that 1 = HCF(5,1) = HCF(21,5) = HCF(26,21) = HCF(125,26) = HCF(276,125) = HCF(677,276) = HCF(953,677) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 435 > 1, we apply the division lemma to 435 and 1, to get

435 = 1 x 435 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 435 is 1

Notice that 1 = HCF(435,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 953, 677, 435 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 953, 677, 435?

Answer: HCF of 953, 677, 435 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 953, 677, 435 using Euclid's Algorithm?

Answer: For arbitrary numbers 953, 677, 435 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.