Highest Common Factor of 955, 843, 34, 863 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 955, 843, 34, 863 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 955, 843, 34, 863 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 955, 843, 34, 863 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 955, 843, 34, 863 is 1.

HCF(955, 843, 34, 863) = 1

HCF of 955, 843, 34, 863 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 955, 843, 34, 863 is 1.

Highest Common Factor of 955,843,34,863 using Euclid's algorithm

Highest Common Factor of 955,843,34,863 is 1

Step 1: Since 955 > 843, we apply the division lemma to 955 and 843, to get

955 = 843 x 1 + 112

Step 2: Since the reminder 843 ≠ 0, we apply division lemma to 112 and 843, to get

843 = 112 x 7 + 59

Step 3: We consider the new divisor 112 and the new remainder 59, and apply the division lemma to get

112 = 59 x 1 + 53

We consider the new divisor 59 and the new remainder 53,and apply the division lemma to get

59 = 53 x 1 + 6

We consider the new divisor 53 and the new remainder 6,and apply the division lemma to get

53 = 6 x 8 + 5

We consider the new divisor 6 and the new remainder 5,and apply the division lemma to get

6 = 5 x 1 + 1

We consider the new divisor 5 and the new remainder 1,and apply the division lemma to get

5 = 1 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 955 and 843 is 1

Notice that 1 = HCF(5,1) = HCF(6,5) = HCF(53,6) = HCF(59,53) = HCF(112,59) = HCF(843,112) = HCF(955,843) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 34 > 1, we apply the division lemma to 34 and 1, to get

34 = 1 x 34 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 34 is 1

Notice that 1 = HCF(34,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 863 > 1, we apply the division lemma to 863 and 1, to get

863 = 1 x 863 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 863 is 1

Notice that 1 = HCF(863,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 955, 843, 34, 863 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 955, 843, 34, 863?

Answer: HCF of 955, 843, 34, 863 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 955, 843, 34, 863 using Euclid's Algorithm?

Answer: For arbitrary numbers 955, 843, 34, 863 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.