Highest Common Factor of 957, 266, 147, 283 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 957, 266, 147, 283 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 957, 266, 147, 283 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 957, 266, 147, 283 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 957, 266, 147, 283 is 1.

HCF(957, 266, 147, 283) = 1

HCF of 957, 266, 147, 283 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 957, 266, 147, 283 is 1.

Highest Common Factor of 957,266,147,283 using Euclid's algorithm

Highest Common Factor of 957,266,147,283 is 1

Step 1: Since 957 > 266, we apply the division lemma to 957 and 266, to get

957 = 266 x 3 + 159

Step 2: Since the reminder 266 ≠ 0, we apply division lemma to 159 and 266, to get

266 = 159 x 1 + 107

Step 3: We consider the new divisor 159 and the new remainder 107, and apply the division lemma to get

159 = 107 x 1 + 52

We consider the new divisor 107 and the new remainder 52,and apply the division lemma to get

107 = 52 x 2 + 3

We consider the new divisor 52 and the new remainder 3,and apply the division lemma to get

52 = 3 x 17 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 957 and 266 is 1

Notice that 1 = HCF(3,1) = HCF(52,3) = HCF(107,52) = HCF(159,107) = HCF(266,159) = HCF(957,266) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 147 > 1, we apply the division lemma to 147 and 1, to get

147 = 1 x 147 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 147 is 1

Notice that 1 = HCF(147,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 283 > 1, we apply the division lemma to 283 and 1, to get

283 = 1 x 283 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 283 is 1

Notice that 1 = HCF(283,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 957, 266, 147, 283 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 957, 266, 147, 283?

Answer: HCF of 957, 266, 147, 283 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 957, 266, 147, 283 using Euclid's Algorithm?

Answer: For arbitrary numbers 957, 266, 147, 283 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.