Highest Common Factor of 957, 9199 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 957, 9199 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 957, 9199 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 957, 9199 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 957, 9199 is 1.

HCF(957, 9199) = 1

HCF of 957, 9199 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 957, 9199 is 1.

Highest Common Factor of 957,9199 using Euclid's algorithm

Highest Common Factor of 957,9199 is 1

Step 1: Since 9199 > 957, we apply the division lemma to 9199 and 957, to get

9199 = 957 x 9 + 586

Step 2: Since the reminder 957 ≠ 0, we apply division lemma to 586 and 957, to get

957 = 586 x 1 + 371

Step 3: We consider the new divisor 586 and the new remainder 371, and apply the division lemma to get

586 = 371 x 1 + 215

We consider the new divisor 371 and the new remainder 215,and apply the division lemma to get

371 = 215 x 1 + 156

We consider the new divisor 215 and the new remainder 156,and apply the division lemma to get

215 = 156 x 1 + 59

We consider the new divisor 156 and the new remainder 59,and apply the division lemma to get

156 = 59 x 2 + 38

We consider the new divisor 59 and the new remainder 38,and apply the division lemma to get

59 = 38 x 1 + 21

We consider the new divisor 38 and the new remainder 21,and apply the division lemma to get

38 = 21 x 1 + 17

We consider the new divisor 21 and the new remainder 17,and apply the division lemma to get

21 = 17 x 1 + 4

We consider the new divisor 17 and the new remainder 4,and apply the division lemma to get

17 = 4 x 4 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 957 and 9199 is 1

Notice that 1 = HCF(4,1) = HCF(17,4) = HCF(21,17) = HCF(38,21) = HCF(59,38) = HCF(156,59) = HCF(215,156) = HCF(371,215) = HCF(586,371) = HCF(957,586) = HCF(9199,957) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 957, 9199 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 957, 9199?

Answer: HCF of 957, 9199 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 957, 9199 using Euclid's Algorithm?

Answer: For arbitrary numbers 957, 9199 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.