Highest Common Factor of 958, 677, 242, 61 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 958, 677, 242, 61 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 958, 677, 242, 61 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 958, 677, 242, 61 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 958, 677, 242, 61 is 1.

HCF(958, 677, 242, 61) = 1

HCF of 958, 677, 242, 61 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 958, 677, 242, 61 is 1.

Highest Common Factor of 958,677,242,61 using Euclid's algorithm

Highest Common Factor of 958,677,242,61 is 1

Step 1: Since 958 > 677, we apply the division lemma to 958 and 677, to get

958 = 677 x 1 + 281

Step 2: Since the reminder 677 ≠ 0, we apply division lemma to 281 and 677, to get

677 = 281 x 2 + 115

Step 3: We consider the new divisor 281 and the new remainder 115, and apply the division lemma to get

281 = 115 x 2 + 51

We consider the new divisor 115 and the new remainder 51,and apply the division lemma to get

115 = 51 x 2 + 13

We consider the new divisor 51 and the new remainder 13,and apply the division lemma to get

51 = 13 x 3 + 12

We consider the new divisor 13 and the new remainder 12,and apply the division lemma to get

13 = 12 x 1 + 1

We consider the new divisor 12 and the new remainder 1,and apply the division lemma to get

12 = 1 x 12 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 958 and 677 is 1

Notice that 1 = HCF(12,1) = HCF(13,12) = HCF(51,13) = HCF(115,51) = HCF(281,115) = HCF(677,281) = HCF(958,677) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 242 > 1, we apply the division lemma to 242 and 1, to get

242 = 1 x 242 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 242 is 1

Notice that 1 = HCF(242,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 61 > 1, we apply the division lemma to 61 and 1, to get

61 = 1 x 61 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 61 is 1

Notice that 1 = HCF(61,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 958, 677, 242, 61 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 958, 677, 242, 61?

Answer: HCF of 958, 677, 242, 61 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 958, 677, 242, 61 using Euclid's Algorithm?

Answer: For arbitrary numbers 958, 677, 242, 61 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.