Highest Common Factor of 959, 793, 289, 19 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 959, 793, 289, 19 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 959, 793, 289, 19 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 959, 793, 289, 19 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 959, 793, 289, 19 is 1.

HCF(959, 793, 289, 19) = 1

HCF of 959, 793, 289, 19 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 959, 793, 289, 19 is 1.

Highest Common Factor of 959,793,289,19 using Euclid's algorithm

Highest Common Factor of 959,793,289,19 is 1

Step 1: Since 959 > 793, we apply the division lemma to 959 and 793, to get

959 = 793 x 1 + 166

Step 2: Since the reminder 793 ≠ 0, we apply division lemma to 166 and 793, to get

793 = 166 x 4 + 129

Step 3: We consider the new divisor 166 and the new remainder 129, and apply the division lemma to get

166 = 129 x 1 + 37

We consider the new divisor 129 and the new remainder 37,and apply the division lemma to get

129 = 37 x 3 + 18

We consider the new divisor 37 and the new remainder 18,and apply the division lemma to get

37 = 18 x 2 + 1

We consider the new divisor 18 and the new remainder 1,and apply the division lemma to get

18 = 1 x 18 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 959 and 793 is 1

Notice that 1 = HCF(18,1) = HCF(37,18) = HCF(129,37) = HCF(166,129) = HCF(793,166) = HCF(959,793) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 289 > 1, we apply the division lemma to 289 and 1, to get

289 = 1 x 289 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 289 is 1

Notice that 1 = HCF(289,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 19 > 1, we apply the division lemma to 19 and 1, to get

19 = 1 x 19 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 19 is 1

Notice that 1 = HCF(19,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 959, 793, 289, 19 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 959, 793, 289, 19?

Answer: HCF of 959, 793, 289, 19 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 959, 793, 289, 19 using Euclid's Algorithm?

Answer: For arbitrary numbers 959, 793, 289, 19 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.