Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 9593, 4460 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 9593, 4460 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 9593, 4460 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 9593, 4460 is 1.
HCF(9593, 4460) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 9593, 4460 is 1.
Step 1: Since 9593 > 4460, we apply the division lemma to 9593 and 4460, to get
9593 = 4460 x 2 + 673
Step 2: Since the reminder 4460 ≠ 0, we apply division lemma to 673 and 4460, to get
4460 = 673 x 6 + 422
Step 3: We consider the new divisor 673 and the new remainder 422, and apply the division lemma to get
673 = 422 x 1 + 251
We consider the new divisor 422 and the new remainder 251,and apply the division lemma to get
422 = 251 x 1 + 171
We consider the new divisor 251 and the new remainder 171,and apply the division lemma to get
251 = 171 x 1 + 80
We consider the new divisor 171 and the new remainder 80,and apply the division lemma to get
171 = 80 x 2 + 11
We consider the new divisor 80 and the new remainder 11,and apply the division lemma to get
80 = 11 x 7 + 3
We consider the new divisor 11 and the new remainder 3,and apply the division lemma to get
11 = 3 x 3 + 2
We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get
3 = 2 x 1 + 1
We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 9593 and 4460 is 1
Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(11,3) = HCF(80,11) = HCF(171,80) = HCF(251,171) = HCF(422,251) = HCF(673,422) = HCF(4460,673) = HCF(9593,4460) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 9593, 4460?
Answer: HCF of 9593, 4460 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 9593, 4460 using Euclid's Algorithm?
Answer: For arbitrary numbers 9593, 4460 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.