Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 9597, 9764 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 9597, 9764 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 9597, 9764 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 9597, 9764 is 1.
HCF(9597, 9764) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 9597, 9764 is 1.
Step 1: Since 9764 > 9597, we apply the division lemma to 9764 and 9597, to get
9764 = 9597 x 1 + 167
Step 2: Since the reminder 9597 ≠ 0, we apply division lemma to 167 and 9597, to get
9597 = 167 x 57 + 78
Step 3: We consider the new divisor 167 and the new remainder 78, and apply the division lemma to get
167 = 78 x 2 + 11
We consider the new divisor 78 and the new remainder 11,and apply the division lemma to get
78 = 11 x 7 + 1
We consider the new divisor 11 and the new remainder 1,and apply the division lemma to get
11 = 1 x 11 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 9597 and 9764 is 1
Notice that 1 = HCF(11,1) = HCF(78,11) = HCF(167,78) = HCF(9597,167) = HCF(9764,9597) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 9597, 9764?
Answer: HCF of 9597, 9764 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 9597, 9764 using Euclid's Algorithm?
Answer: For arbitrary numbers 9597, 9764 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.