Highest Common Factor of 96, 43, 685, 153 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 96, 43, 685, 153 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 96, 43, 685, 153 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 96, 43, 685, 153 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 96, 43, 685, 153 is 1.

HCF(96, 43, 685, 153) = 1

HCF of 96, 43, 685, 153 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 96, 43, 685, 153 is 1.

Highest Common Factor of 96,43,685,153 using Euclid's algorithm

Highest Common Factor of 96,43,685,153 is 1

Step 1: Since 96 > 43, we apply the division lemma to 96 and 43, to get

96 = 43 x 2 + 10

Step 2: Since the reminder 43 ≠ 0, we apply division lemma to 10 and 43, to get

43 = 10 x 4 + 3

Step 3: We consider the new divisor 10 and the new remainder 3, and apply the division lemma to get

10 = 3 x 3 + 1

We consider the new divisor 3 and the new remainder 1, and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 96 and 43 is 1

Notice that 1 = HCF(3,1) = HCF(10,3) = HCF(43,10) = HCF(96,43) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 685 > 1, we apply the division lemma to 685 and 1, to get

685 = 1 x 685 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 685 is 1

Notice that 1 = HCF(685,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 153 > 1, we apply the division lemma to 153 and 1, to get

153 = 1 x 153 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 153 is 1

Notice that 1 = HCF(153,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 96, 43, 685, 153 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 96, 43, 685, 153?

Answer: HCF of 96, 43, 685, 153 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 96, 43, 685, 153 using Euclid's Algorithm?

Answer: For arbitrary numbers 96, 43, 685, 153 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.