Highest Common Factor of 9605, 3991 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 9605, 3991 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 9605, 3991 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 9605, 3991 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 9605, 3991 is 1.

HCF(9605, 3991) = 1

HCF of 9605, 3991 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 9605, 3991 is 1.

Highest Common Factor of 9605,3991 using Euclid's algorithm

Highest Common Factor of 9605,3991 is 1

Step 1: Since 9605 > 3991, we apply the division lemma to 9605 and 3991, to get

9605 = 3991 x 2 + 1623

Step 2: Since the reminder 3991 ≠ 0, we apply division lemma to 1623 and 3991, to get

3991 = 1623 x 2 + 745

Step 3: We consider the new divisor 1623 and the new remainder 745, and apply the division lemma to get

1623 = 745 x 2 + 133

We consider the new divisor 745 and the new remainder 133,and apply the division lemma to get

745 = 133 x 5 + 80

We consider the new divisor 133 and the new remainder 80,and apply the division lemma to get

133 = 80 x 1 + 53

We consider the new divisor 80 and the new remainder 53,and apply the division lemma to get

80 = 53 x 1 + 27

We consider the new divisor 53 and the new remainder 27,and apply the division lemma to get

53 = 27 x 1 + 26

We consider the new divisor 27 and the new remainder 26,and apply the division lemma to get

27 = 26 x 1 + 1

We consider the new divisor 26 and the new remainder 1,and apply the division lemma to get

26 = 1 x 26 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 9605 and 3991 is 1

Notice that 1 = HCF(26,1) = HCF(27,26) = HCF(53,27) = HCF(80,53) = HCF(133,80) = HCF(745,133) = HCF(1623,745) = HCF(3991,1623) = HCF(9605,3991) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 9605, 3991 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 9605, 3991?

Answer: HCF of 9605, 3991 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 9605, 3991 using Euclid's Algorithm?

Answer: For arbitrary numbers 9605, 3991 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.