Highest Common Factor of 961, 33332 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 961, 33332 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 961, 33332 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 961, 33332 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 961, 33332 is 1.

HCF(961, 33332) = 1

HCF of 961, 33332 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 961, 33332 is 1.

Highest Common Factor of 961,33332 using Euclid's algorithm

Highest Common Factor of 961,33332 is 1

Step 1: Since 33332 > 961, we apply the division lemma to 33332 and 961, to get

33332 = 961 x 34 + 658

Step 2: Since the reminder 961 ≠ 0, we apply division lemma to 658 and 961, to get

961 = 658 x 1 + 303

Step 3: We consider the new divisor 658 and the new remainder 303, and apply the division lemma to get

658 = 303 x 2 + 52

We consider the new divisor 303 and the new remainder 52,and apply the division lemma to get

303 = 52 x 5 + 43

We consider the new divisor 52 and the new remainder 43,and apply the division lemma to get

52 = 43 x 1 + 9

We consider the new divisor 43 and the new remainder 9,and apply the division lemma to get

43 = 9 x 4 + 7

We consider the new divisor 9 and the new remainder 7,and apply the division lemma to get

9 = 7 x 1 + 2

We consider the new divisor 7 and the new remainder 2,and apply the division lemma to get

7 = 2 x 3 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 961 and 33332 is 1

Notice that 1 = HCF(2,1) = HCF(7,2) = HCF(9,7) = HCF(43,9) = HCF(52,43) = HCF(303,52) = HCF(658,303) = HCF(961,658) = HCF(33332,961) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 961, 33332 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 961, 33332?

Answer: HCF of 961, 33332 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 961, 33332 using Euclid's Algorithm?

Answer: For arbitrary numbers 961, 33332 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.