Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 9619, 1409 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 9619, 1409 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 9619, 1409 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 9619, 1409 is 1.
HCF(9619, 1409) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 9619, 1409 is 1.
Step 1: Since 9619 > 1409, we apply the division lemma to 9619 and 1409, to get
9619 = 1409 x 6 + 1165
Step 2: Since the reminder 1409 ≠ 0, we apply division lemma to 1165 and 1409, to get
1409 = 1165 x 1 + 244
Step 3: We consider the new divisor 1165 and the new remainder 244, and apply the division lemma to get
1165 = 244 x 4 + 189
We consider the new divisor 244 and the new remainder 189,and apply the division lemma to get
244 = 189 x 1 + 55
We consider the new divisor 189 and the new remainder 55,and apply the division lemma to get
189 = 55 x 3 + 24
We consider the new divisor 55 and the new remainder 24,and apply the division lemma to get
55 = 24 x 2 + 7
We consider the new divisor 24 and the new remainder 7,and apply the division lemma to get
24 = 7 x 3 + 3
We consider the new divisor 7 and the new remainder 3,and apply the division lemma to get
7 = 3 x 2 + 1
We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get
3 = 1 x 3 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 9619 and 1409 is 1
Notice that 1 = HCF(3,1) = HCF(7,3) = HCF(24,7) = HCF(55,24) = HCF(189,55) = HCF(244,189) = HCF(1165,244) = HCF(1409,1165) = HCF(9619,1409) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 9619, 1409?
Answer: HCF of 9619, 1409 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 9619, 1409 using Euclid's Algorithm?
Answer: For arbitrary numbers 9619, 1409 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.