Highest Common Factor of 962, 185, 981 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 962, 185, 981 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 962, 185, 981 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 962, 185, 981 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 962, 185, 981 is 1.

HCF(962, 185, 981) = 1

HCF of 962, 185, 981 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 962, 185, 981 is 1.

Highest Common Factor of 962,185,981 using Euclid's algorithm

Highest Common Factor of 962,185,981 is 1

Step 1: Since 962 > 185, we apply the division lemma to 962 and 185, to get

962 = 185 x 5 + 37

Step 2: Since the reminder 185 ≠ 0, we apply division lemma to 37 and 185, to get

185 = 37 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 37, the HCF of 962 and 185 is 37

Notice that 37 = HCF(185,37) = HCF(962,185) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 981 > 37, we apply the division lemma to 981 and 37, to get

981 = 37 x 26 + 19

Step 2: Since the reminder 37 ≠ 0, we apply division lemma to 19 and 37, to get

37 = 19 x 1 + 18

Step 3: We consider the new divisor 19 and the new remainder 18, and apply the division lemma to get

19 = 18 x 1 + 1

We consider the new divisor 18 and the new remainder 1, and apply the division lemma to get

18 = 1 x 18 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 37 and 981 is 1

Notice that 1 = HCF(18,1) = HCF(19,18) = HCF(37,19) = HCF(981,37) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 962, 185, 981 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 962, 185, 981?

Answer: HCF of 962, 185, 981 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 962, 185, 981 using Euclid's Algorithm?

Answer: For arbitrary numbers 962, 185, 981 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.