Highest Common Factor of 962, 370 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 962, 370 i.e. 74 the largest integer that leaves a remainder zero for all numbers.

HCF of 962, 370 is 74 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 962, 370 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 962, 370 is 74.

HCF(962, 370) = 74

HCF of 962, 370 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 962, 370 is 74.

Highest Common Factor of 962,370 using Euclid's algorithm

Highest Common Factor of 962,370 is 74

Step 1: Since 962 > 370, we apply the division lemma to 962 and 370, to get

962 = 370 x 2 + 222

Step 2: Since the reminder 370 ≠ 0, we apply division lemma to 222 and 370, to get

370 = 222 x 1 + 148

Step 3: We consider the new divisor 222 and the new remainder 148, and apply the division lemma to get

222 = 148 x 1 + 74

We consider the new divisor 148 and the new remainder 74, and apply the division lemma to get

148 = 74 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 74, the HCF of 962 and 370 is 74

Notice that 74 = HCF(148,74) = HCF(222,148) = HCF(370,222) = HCF(962,370) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 962, 370 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 962, 370?

Answer: HCF of 962, 370 is 74 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 962, 370 using Euclid's Algorithm?

Answer: For arbitrary numbers 962, 370 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.