Highest Common Factor of 964, 557 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 964, 557 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 964, 557 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 964, 557 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 964, 557 is 1.

HCF(964, 557) = 1

HCF of 964, 557 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 964, 557 is 1.

Highest Common Factor of 964,557 using Euclid's algorithm

Highest Common Factor of 964,557 is 1

Step 1: Since 964 > 557, we apply the division lemma to 964 and 557, to get

964 = 557 x 1 + 407

Step 2: Since the reminder 557 ≠ 0, we apply division lemma to 407 and 557, to get

557 = 407 x 1 + 150

Step 3: We consider the new divisor 407 and the new remainder 150, and apply the division lemma to get

407 = 150 x 2 + 107

We consider the new divisor 150 and the new remainder 107,and apply the division lemma to get

150 = 107 x 1 + 43

We consider the new divisor 107 and the new remainder 43,and apply the division lemma to get

107 = 43 x 2 + 21

We consider the new divisor 43 and the new remainder 21,and apply the division lemma to get

43 = 21 x 2 + 1

We consider the new divisor 21 and the new remainder 1,and apply the division lemma to get

21 = 1 x 21 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 964 and 557 is 1

Notice that 1 = HCF(21,1) = HCF(43,21) = HCF(107,43) = HCF(150,107) = HCF(407,150) = HCF(557,407) = HCF(964,557) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 964, 557 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 964, 557?

Answer: HCF of 964, 557 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 964, 557 using Euclid's Algorithm?

Answer: For arbitrary numbers 964, 557 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.