Highest Common Factor of 966, 818, 817, 88 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 966, 818, 817, 88 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 966, 818, 817, 88 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 966, 818, 817, 88 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 966, 818, 817, 88 is 1.

HCF(966, 818, 817, 88) = 1

HCF of 966, 818, 817, 88 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 966, 818, 817, 88 is 1.

Highest Common Factor of 966,818,817,88 using Euclid's algorithm

Highest Common Factor of 966,818,817,88 is 1

Step 1: Since 966 > 818, we apply the division lemma to 966 and 818, to get

966 = 818 x 1 + 148

Step 2: Since the reminder 818 ≠ 0, we apply division lemma to 148 and 818, to get

818 = 148 x 5 + 78

Step 3: We consider the new divisor 148 and the new remainder 78, and apply the division lemma to get

148 = 78 x 1 + 70

We consider the new divisor 78 and the new remainder 70,and apply the division lemma to get

78 = 70 x 1 + 8

We consider the new divisor 70 and the new remainder 8,and apply the division lemma to get

70 = 8 x 8 + 6

We consider the new divisor 8 and the new remainder 6,and apply the division lemma to get

8 = 6 x 1 + 2

We consider the new divisor 6 and the new remainder 2,and apply the division lemma to get

6 = 2 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 966 and 818 is 2

Notice that 2 = HCF(6,2) = HCF(8,6) = HCF(70,8) = HCF(78,70) = HCF(148,78) = HCF(818,148) = HCF(966,818) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 817 > 2, we apply the division lemma to 817 and 2, to get

817 = 2 x 408 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 817 is 1

Notice that 1 = HCF(2,1) = HCF(817,2) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 88 > 1, we apply the division lemma to 88 and 1, to get

88 = 1 x 88 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 88 is 1

Notice that 1 = HCF(88,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 966, 818, 817, 88 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 966, 818, 817, 88?

Answer: HCF of 966, 818, 817, 88 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 966, 818, 817, 88 using Euclid's Algorithm?

Answer: For arbitrary numbers 966, 818, 817, 88 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.