Highest Common Factor of 968, 609, 814, 143 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 968, 609, 814, 143 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 968, 609, 814, 143 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 968, 609, 814, 143 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 968, 609, 814, 143 is 1.

HCF(968, 609, 814, 143) = 1

HCF of 968, 609, 814, 143 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 968, 609, 814, 143 is 1.

Highest Common Factor of 968,609,814,143 using Euclid's algorithm

Highest Common Factor of 968,609,814,143 is 1

Step 1: Since 968 > 609, we apply the division lemma to 968 and 609, to get

968 = 609 x 1 + 359

Step 2: Since the reminder 609 ≠ 0, we apply division lemma to 359 and 609, to get

609 = 359 x 1 + 250

Step 3: We consider the new divisor 359 and the new remainder 250, and apply the division lemma to get

359 = 250 x 1 + 109

We consider the new divisor 250 and the new remainder 109,and apply the division lemma to get

250 = 109 x 2 + 32

We consider the new divisor 109 and the new remainder 32,and apply the division lemma to get

109 = 32 x 3 + 13

We consider the new divisor 32 and the new remainder 13,and apply the division lemma to get

32 = 13 x 2 + 6

We consider the new divisor 13 and the new remainder 6,and apply the division lemma to get

13 = 6 x 2 + 1

We consider the new divisor 6 and the new remainder 1,and apply the division lemma to get

6 = 1 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 968 and 609 is 1

Notice that 1 = HCF(6,1) = HCF(13,6) = HCF(32,13) = HCF(109,32) = HCF(250,109) = HCF(359,250) = HCF(609,359) = HCF(968,609) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 814 > 1, we apply the division lemma to 814 and 1, to get

814 = 1 x 814 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 814 is 1

Notice that 1 = HCF(814,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 143 > 1, we apply the division lemma to 143 and 1, to get

143 = 1 x 143 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 143 is 1

Notice that 1 = HCF(143,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 968, 609, 814, 143 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 968, 609, 814, 143?

Answer: HCF of 968, 609, 814, 143 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 968, 609, 814, 143 using Euclid's Algorithm?

Answer: For arbitrary numbers 968, 609, 814, 143 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.