Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 971, 173, 610, 495 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 971, 173, 610, 495 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 971, 173, 610, 495 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 971, 173, 610, 495 is 1.
HCF(971, 173, 610, 495) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 971, 173, 610, 495 is 1.
Step 1: Since 971 > 173, we apply the division lemma to 971 and 173, to get
971 = 173 x 5 + 106
Step 2: Since the reminder 173 ≠ 0, we apply division lemma to 106 and 173, to get
173 = 106 x 1 + 67
Step 3: We consider the new divisor 106 and the new remainder 67, and apply the division lemma to get
106 = 67 x 1 + 39
We consider the new divisor 67 and the new remainder 39,and apply the division lemma to get
67 = 39 x 1 + 28
We consider the new divisor 39 and the new remainder 28,and apply the division lemma to get
39 = 28 x 1 + 11
We consider the new divisor 28 and the new remainder 11,and apply the division lemma to get
28 = 11 x 2 + 6
We consider the new divisor 11 and the new remainder 6,and apply the division lemma to get
11 = 6 x 1 + 5
We consider the new divisor 6 and the new remainder 5,and apply the division lemma to get
6 = 5 x 1 + 1
We consider the new divisor 5 and the new remainder 1,and apply the division lemma to get
5 = 1 x 5 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 971 and 173 is 1
Notice that 1 = HCF(5,1) = HCF(6,5) = HCF(11,6) = HCF(28,11) = HCF(39,28) = HCF(67,39) = HCF(106,67) = HCF(173,106) = HCF(971,173) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 610 > 1, we apply the division lemma to 610 and 1, to get
610 = 1 x 610 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 610 is 1
Notice that 1 = HCF(610,1) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 495 > 1, we apply the division lemma to 495 and 1, to get
495 = 1 x 495 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 495 is 1
Notice that 1 = HCF(495,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 971, 173, 610, 495?
Answer: HCF of 971, 173, 610, 495 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 971, 173, 610, 495 using Euclid's Algorithm?
Answer: For arbitrary numbers 971, 173, 610, 495 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.