Highest Common Factor of 9736, 3297 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 9736, 3297 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 9736, 3297 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 9736, 3297 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 9736, 3297 is 1.

HCF(9736, 3297) = 1

HCF of 9736, 3297 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 9736, 3297 is 1.

Highest Common Factor of 9736,3297 using Euclid's algorithm

Highest Common Factor of 9736,3297 is 1

Step 1: Since 9736 > 3297, we apply the division lemma to 9736 and 3297, to get

9736 = 3297 x 2 + 3142

Step 2: Since the reminder 3297 ≠ 0, we apply division lemma to 3142 and 3297, to get

3297 = 3142 x 1 + 155

Step 3: We consider the new divisor 3142 and the new remainder 155, and apply the division lemma to get

3142 = 155 x 20 + 42

We consider the new divisor 155 and the new remainder 42,and apply the division lemma to get

155 = 42 x 3 + 29

We consider the new divisor 42 and the new remainder 29,and apply the division lemma to get

42 = 29 x 1 + 13

We consider the new divisor 29 and the new remainder 13,and apply the division lemma to get

29 = 13 x 2 + 3

We consider the new divisor 13 and the new remainder 3,and apply the division lemma to get

13 = 3 x 4 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 9736 and 3297 is 1

Notice that 1 = HCF(3,1) = HCF(13,3) = HCF(29,13) = HCF(42,29) = HCF(155,42) = HCF(3142,155) = HCF(3297,3142) = HCF(9736,3297) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 9736, 3297 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 9736, 3297?

Answer: HCF of 9736, 3297 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 9736, 3297 using Euclid's Algorithm?

Answer: For arbitrary numbers 9736, 3297 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.