Highest Common Factor of 974, 571, 635 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 974, 571, 635 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 974, 571, 635 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 974, 571, 635 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 974, 571, 635 is 1.

HCF(974, 571, 635) = 1

HCF of 974, 571, 635 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 974, 571, 635 is 1.

Highest Common Factor of 974,571,635 using Euclid's algorithm

Highest Common Factor of 974,571,635 is 1

Step 1: Since 974 > 571, we apply the division lemma to 974 and 571, to get

974 = 571 x 1 + 403

Step 2: Since the reminder 571 ≠ 0, we apply division lemma to 403 and 571, to get

571 = 403 x 1 + 168

Step 3: We consider the new divisor 403 and the new remainder 168, and apply the division lemma to get

403 = 168 x 2 + 67

We consider the new divisor 168 and the new remainder 67,and apply the division lemma to get

168 = 67 x 2 + 34

We consider the new divisor 67 and the new remainder 34,and apply the division lemma to get

67 = 34 x 1 + 33

We consider the new divisor 34 and the new remainder 33,and apply the division lemma to get

34 = 33 x 1 + 1

We consider the new divisor 33 and the new remainder 1,and apply the division lemma to get

33 = 1 x 33 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 974 and 571 is 1

Notice that 1 = HCF(33,1) = HCF(34,33) = HCF(67,34) = HCF(168,67) = HCF(403,168) = HCF(571,403) = HCF(974,571) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 635 > 1, we apply the division lemma to 635 and 1, to get

635 = 1 x 635 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 635 is 1

Notice that 1 = HCF(635,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 974, 571, 635 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 974, 571, 635?

Answer: HCF of 974, 571, 635 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 974, 571, 635 using Euclid's Algorithm?

Answer: For arbitrary numbers 974, 571, 635 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.